M427J HW 9 Solutions

1 Section 3.4

1.

$$
A=\left[\begin{array}{cc}
5 & -1 \\
3 & 1
\end{array}\right]
$$

The eigenvalues of A are $\lambda=4,2$; the eigenvector corresponding to $\lambda_{1}=4$ is $\xi_{1}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$.
The eigenvector corresponding to $\lambda_{2}=2$ is $\xi_{2}=\left[\begin{array}{ll}1 & 3\end{array}\right]^{T}$. The norms of the eigenvectors are $\left\|\xi_{1}\right\|=\sqrt{2}$ and $\left\|\xi_{2}\right\|=\sqrt{10}$, so that the corresponding normalized eigenvectors are

$$
\widehat{\xi}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \widehat{\xi_{2}}=\frac{1}{\sqrt{10}}\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

(the hat-notation $\widehat{~ d e n o t e s ~ a ~ u n i t-v e c t o r) . ~}$
2.

$$
A=\left[\begin{array}{ll}
3 & -2 \\
4 & -1
\end{array}\right]
$$

The eigenvalue/vector pairs are:

$$
\lambda_{1}=1+2 i, \quad \xi_{1}=\left[\begin{array}{c}
1+i \\
2
\end{array}\right]
$$

and

$$
\lambda_{2}=1-2 i, \quad \xi_{2}=\left[\begin{array}{c}
1-i \\
2
\end{array}\right] .
$$

After normalizing by $\left\|\xi_{1}\right\|=\left\|\xi_{2}\right\|=\sqrt{1^{2}+1^{2}+2^{2}}=\sqrt{6}$, we get

$$
\widehat{\xi}_{1}=\frac{1}{\sqrt{6}}\left[\begin{array}{c}
1+i \\
2
\end{array}\right], \quad \widehat{\xi_{2}}=\frac{1}{\sqrt{6}}\left[\begin{array}{c}
1-i \\
2
\end{array}\right] .
$$

3.

$$
A=\left[\begin{array}{cc}
-2 & 1 \\
1 & -2
\end{array}\right]
$$

The eigenvalue/vector pairs are:

$$
\lambda_{1}=-1, \quad \xi_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

and

$$
\lambda_{2}=-3, \quad \xi_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] .
$$

so that $\left\|\xi_{1}\right\|=\left\|\xi_{2}\right\|=\sqrt{2}$. The normalized eigenvectors then are

$$
\widehat{\xi}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \widehat{\xi_{2}}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] .
$$

2 Section 3.5

1.

$$
\mathrm{x}^{\prime}=\left[\begin{array}{ll}
1 & -2 \\
3 & -4
\end{array}\right] \mathrm{x}
$$

The general solution the first order ODE system is

$$
\mathbf{x}_{\mathrm{gen}}=c_{1} e^{\lambda_{1} t} \xi_{1}+c_{2} e^{\lambda_{2} t} \xi_{2}
$$

where λ_{i}, ξ_{i} are the eigenvalue/eigenvector pairs of the matrix above. They are

$$
\lambda_{1}=-1, \xi_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

and

$$
\lambda_{2}=-2, \xi_{2}=\left[\begin{array}{l}
2 \\
3
\end{array}\right] .
$$

Note there is no reason to normalize here, since c_{1}, c_{2} are arbitrary until fixed by an initial condition.
2.

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right] \mathbf{x}
$$

The general solution the first order ODE system is

$$
\mathbf{x}_{\mathrm{gen}}=c_{1} e^{\lambda_{1} t} \xi_{1}+c_{2} e^{\lambda_{2} t} \xi_{2}
$$

where λ_{i}, ξ_{i} are the eigenvalue/eigenvector pairs of the matrix above. They are

$$
\lambda_{1}=1, \xi_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

and

$$
\lambda_{2}=-1, \xi_{2}=\left[\begin{array}{l}
1 \\
3
\end{array}\right] .
$$

3.

$$
\mathrm{x}^{\prime}=\left[\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right] \mathrm{x}
$$

The general solution the first order ODE system is

$$
\mathbf{x}_{\mathrm{gen}}=c_{1} e^{\lambda_{1} t} \xi_{1}+c_{2} e^{\lambda_{2} t} \xi_{2}
$$

where λ_{i}, ξ_{i} are the eigenvalue/eigenvector pairs of the matrix above. They are

$$
\lambda_{1}=2, \xi_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

and

$$
\lambda_{2}=-3, \xi_{2}=\left[\begin{array}{c}
-1 \\
4
\end{array}\right] .
$$

5.

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ll}
-2 & 1 \\
-5 & 4
\end{array}\right] \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

Now we have an IVP. The general solution is, again, given by the linear combination of eigenvectors/eigenvalues of the form:

$$
\mathbf{x}_{\mathrm{gen}}=c_{1} e^{\lambda_{1} t} \xi_{1}+c_{2} e^{\lambda_{2} t} \xi_{2}
$$

The eigenvector/eigenvalue pairs are

$$
\lambda_{1}=-1, \xi_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

and

$$
\lambda_{2}=3, \xi_{2}=\left[\begin{array}{l}
1 \\
5
\end{array}\right]
$$

which gives

$$
\mathbf{x}_{\mathrm{gen}}=c_{1} e^{-t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2} e^{3 t}\left[\begin{array}{l}
1 \\
5
\end{array}\right] .
$$

Now we use the initial condition to solve for c_{1}, c_{2} :

$$
\left[\begin{array}{l}
1 \\
3
\end{array}\right]=c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
5
\end{array}\right] .
$$

The solution to the two-equation, two-unknown system is $c_{1}=1 / 2$ and $c_{2}=1 / 2$, so that

$$
\mathbf{x}=\frac{1}{2} e^{-t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\frac{1}{2} e^{3 t}\left[\begin{array}{l}
1 \\
5
\end{array}\right] .
$$

As $t \rightarrow \infty,(11 / 4) e^{-t} \rightarrow 0$, while $(1 / 2) e^{3 t} \rightarrow+\infty$, so that

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \rightarrow\left[\begin{array}{l}
+\infty \\
+\infty
\end{array}\right]
$$

as $t \rightarrow \infty$.

